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Mid-Infrared and Near-Infrared Diffuse Reflectance Spectroscopy
for Soil Carbon Measurement

G. W. McCarty,* J. B. Reeves III, V. B. Reeves, R. F. Follett, and J. M. Kimble

ABSTRACT Diffuse reflectance spectroscopy offers a nondestruc-
tive means for measurement of C in soils based on theThe ability to inventory soil C on landscapes is limited by the
reflectance spectra of illuminated soil. Both the NIRability to rapidly measure soil C. Diffuse reflectance spectroscopic
(400–2500 nm) and MIR (2500–25 000 nm) region haveanalysis in the near-infrared (NIR, 400–2500 nm) and mid-infrared
been investigated for utility in quantifying soil C (Dalal(MIR, 2500–25 000 nm) regions provides means for measurement of

soil C. To assess the utility of spectroscopy for soil C analysis, we and Henry, 1986; Meyer, 1989; Janik et al., 1998; Reeves
compared the ability to obtain information from these spectral regions et al., 1999; McCarty and Reeves, 2000; Reeves et al.,
to quantify total, organic, and inorganic C in samples representing 14 2001). The characteristics of spectra obtained in these
soil series collected over a large region in the west central United regions varies markedly, with the MIR region domi-
States. The soils temperature regimes ranged from thermic to frigid nated by intense vibration fundamentals, whereas the
and the soil moisture regimes from udic to aridic. The soils ranged NIR region is dominated by much weaker and broader
considerably in organic (0.23–98 g C kg�1 ) and inorganic C content signals from vibration overtones and combination bands.
(0.0–65.4 g CO3-C kg�1 ). These soil samples were analyzed with and These divergent spectral characteristics may be ex-without an acid treatment for removal of CO3. Both spectral regions

pected to have substantial influence on the ability tocontained substantial information on organic and inorganic C in soils
obtain quantitative information from spectral data.studied and MIR analysis substantially outperformed NIR. The supe-

Over the last two decades, NIR spectroscopy (NIRS)rior performance of the MIR region likely reflects higher quality of
has developed as a major tool for quantitative determi-information for soil C in this region. The spectral signature of inorganic
nations of components within often complex organicC was very strong relative to soil organic C. The presence of CO3

matrices whereas MIR spectroscopy (MIRS) has beenreduced ability to quantify organic C using MIR as indicated by
improved ability to measure organic C in acidified soil samples. The used mainly in research for qualitative analysis involving
ability of MIR spectroscopy to quantify C in diverse soils collected spectral interpretation of chemical structures. The main
over a large geographic region indicated that regional calibrations reason for the exclusion of MIRS in quantitative analysis
are feasible. has been the belief that quantitative analysis using the

MIR region required KBr dilution because of the strong
absorptions present (Perkins, 1993; Olinger and Grif-
fiths, 1993a, 1993b). The strength of these absorptionsIncreasing CO2 content of the atmosphere from an-
can lead to spectral distortions and nonlinearities (Cul-thropogenic sources has stimulated research to assess
ler,1993), and could make quantitative analysis difficultthe role of terrestrial ecosystems in the global C cycle.
or impossible in undiluted samples. Recent work, how-The terrestrial biosphere is an important component of
ever, with a number of sample matrices including foodthe global C budget, but estimates of C sequestration
(Downey et al., 1997; Kemsley et al., 1996; Reeves andin terrestrial ecosystems are partly constrained by the
Zapf, 1998), forage (Reeves, 1994), and soil (Janik andlimited ability to assess dynamics in soil C storage. Ag-
Skjemstand, 1995; Janik et al., 1998; Reeves et al., 2001)ricultural croplands have a great potential for sequester-
has demonstrated that good quantitative measurementsing atmospheric C (Lal et al., 1998), but current technol-
are possible in the MIR region. These reports haveogies for monitoring soil C sequestration in terrestrial
demonstrated that quantitative MIRS analysis can beecosystems are not cost effective, or they depend on
performed on neat (as is) samples with good accuracy.intensive methods.

Recent work has demonstrated good ability to estab-
lish local (within-field) NIRS and MIRS calibrations for
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Fig. 1. Geographic location of the 14 sampling sites within the west central United States.

of soil carbonates involved addition of 100 mL of 0.33 Min these evaluations was limited to a few agricultural
H3PO4 to 5 to 6 g of soil and shaking for 1 h. The procedurefields, and a question remained concerning the ability
was repeated until the pH of the soil solution remained withinto establish broader calibrations across diverse soil types.
0.2 pH unit of that of the original acid solution (Follett et al.,The purpose of this study was to compare the abilities
1997; Follett and Pruessner, 2000). These acidified soil samplesof MIRS and NIRS to measure total, organic, and inor- were oven dried at 60�C, ground to pass a 180-�m screen

ganic C in a highly diverse set of soils and to assess opening, and analyzed for C by dry combustion. Follett and
feasibility of establishing regional diffuse reflectance Pruessner (2000) reported that acidification removed soil inor-
calibrations for soil C. ganic C (carbonates), but little or no organic C. However,

they did caution that for some soils, acidification may remove
neutral sugars and possibly other soluble organic compoundsMATERIALS AND METHODS and the significance of this influence needs further investi-
gation.Soil Collection and Conventional Analyses

The 273 samples used in this study were soil profile samples Infrared Spectroscopycollected as described by Follett et al. (2001) from 14 geo-
graphically diverse locations in the central United States (Fig. Samples were scanned in the MIR from 4000 to 400 cm�1

1). Soil temperature regimes ranged from thermic to frigid (2500–25 000 nm) at 4 cm�1 resolution with 64 coadded scans
and soil moisture regimes from udic to aridic. From each per spectra, on a DigiLab FTS-60 Fourier transform spectrom-
location, the soil samples were collected from adjacent parcels eter (Bio-Rad, Randolph, MA) equipped with standard DRIFT
of land under crop production, native vegetation (never culti- optics under purge and with a custom fabricated sample trans-
vated), and conservation reserve program (CRP) manage- port which allowed a 50 by 2 mm2 sample to be scanned
ment. The soils were sampled to a depth of 200 cm by genetic (Reeves, 1996). Samples of ground soil were placed in the
horizons with the surface layer sampled at 0 to 5, 5 to 10, and sample cell without sample dilution and no precautions were
10 to �25 cm (bottom of the Ap for cultivated soils). Before used to avoid specular reflection. Log-transformed reflectance
analyses, soil samples were air dried, mixed, sieved, and data was used in analysis. Near infrared spectra were obtained
ground by a roller mill (180-�m mesh size). Soil C analyses using a NIRSystems model 6500 scanning monochromator
were performed by dry combustion (1500�C) on a Carlo Erba (Foss-NIRSystems, Silver Spring, MD). Samples were scannedC/N analyzer (Haake Buchler Instruments Inc., Saddle Brook, from 1100 to 2498 nm (PbS detector) using a rotating cup.NJ1 ). Total soil C was determined on unamended soil samples Data were collected every 2 nm (700 data points per spectra)and organic soil C was determined on acidified soil samples.

at a resolution of 10 nm.Inorganic soil C was determined by difference between total
and organic soil C. The acidification procedure for removal

Statistical Analysis

Descriptive statistics on soil properties were performed us-1 Trade and company names are included for the benefit of the
ing SAS data analysis software (SAS, 1988),and analyses ofreader and do not imply endorsement or preferential treatment of

the product by the authors or the USDA. NIRS and MIRS spectral were performed by Partial least
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Table 1. Location, soil series, texture, and classification of soils studied.

Location Map symbol† Soil series Texture Taxonomic classification

Akron, CO COS Weld silt loam Fine-loamy, smectitic, mesic Aridic Argiustolls
Indianola, IA IAS Macksburg silty clay loam Fine, smectitic, mesic, Aquic Argiudolls
Dorothy, MN DOS Radium loamy sand Sandy, mixed, frigid, Oxyaquic Hapludolls
Glencoe, MN GCS Nicollet clay loam Fine-loamy, mixed, superactive, mesic Aquic Hapludolls
Roseau, MN ROS Percy loam Coarse-loamy, mixed, superactive, frigid Typic Calciaquolls
Columbia, MO MOS Mexico silt loam Fine, smectitic, mesic Aeric Vertic Epiaqualfs
Sidney, MT MTS Bryant loam Fine-silty, mixed, superactive, frigid Typic Haplustolls
Lincoln, NE NES Crete silt loam Fine, smectitic, mesic Pachic Argiustolls
Mandan, ND MDS Farnuf loam Fine-loamy, mixed superactive, frigid Typic Argiustolls
Medina, ND MES Barnes loam Fine-loamy, mixed, superactive, frigid Calcic Hapludolls
Boley, OK BOS Stephenville loamy fine sand Fine-loamy, siliceous, active, thermic Ultic Haplustalfs
Vinson, OK VIS Madge loam Fine-loamy, mixed, superactive, thermic Typic Argiustolls
Bushland, TX BLS Pullman clay loam Fine, mixed, superactive, thermic Torrertic Paleustolls
Dalhart, TX DHS Dallam fine sandy loam Fine-loamy, mixed, mesic Aridic Paleustalfs

† See Fig. 1.

squares regression (PLS) using Grams/386 PLSPlus V2.1G tion model are classified as spectral outliers which may be
indicative of samples outside the property domain for the cali-(Galactic Industries Corp., Salem, NH). Efforts using a variety

of data subsets, spectral data point averaging, derivatives (first bration set or may be indicative of the quality of information
used to create the model with the spectral region.and second), and other data pretreatments (mean centering,

variance scaling, multiplicative scatter correction, and baseline
correction) were carried out to determine the best data pre- RESULTS AND DISCUSSIONtreatment for each assay. In all cases, the number of PLS
factors used in the calibration was determined by the Predic- The soils used in this study were collected from a large
tion residual error sum of squares (PRESS) F-statistic from geographic region of the west central USA. Taxonomic
the one-out cross validation procedure. Once the optimal num- classification of collected soils is provided in Table 1.
ber of PLS factors was determined, a final calibration was The extensive range in content of total, organic, and
developed. This optimum ranged between 16 to 19 factors for inorganic C for these samples provided a good test ofall soil C calibrations reported here.

the influence of soil diversity on the ability of NIRS
and MIRS to quantify soil C (Table 2).

Chemometrics

Chemometric analysis (Massart et al., 1998) involves use
of numeric factor analysis such as PLS regression to extract
information from spectral data that relates to a property mea-
sured within a population of samples with a given domain of
properties (i.e., the extent of sample diversity). This popula-
tion can constitute a calibration set and the resulting calibra-
tion model can be used to estimate the modeled property in
new samples with properties falling within the property do-
main of the calibration set. The goodness of calibration for
the property of interest can depend on the degree to which
this property can be modeled from spectral information of
samples within the property domain of the calibration set.
The robustness of calibration can depend on the extent of the
property domain for the calibration set. A more inclusive
property domain for the calibration set may result in a greater
ability to characterize samples with greater diversity, but may
also degrade the ability to model the property of interest from
spectral data. Spectral similarity between samples and the
calibration set can provide an indication that the sample falls
within the property domain of the calibration set. For example,
samples with spectral data that do not properly fit the calibra-

Table 2. Summary statistics for properties of soils analyzed (n �
237).

Property Mean Range Std dev.

Total C,† g kg�1 18.3 0.98–104 15.5
Organic C,‡ g kg�1 12.1 0.23–98.0 13.2
Inorganic C,§ g kg�1 6.2 0.00–65.4 10.8
pH CaCl2¶ 6.5 4.10–8.80 1.1
pH H2O# 7.1 4.30–8.80 1.1

† Dry combustion of untreated soil.
Fig. 2. Comparison of mid-infrared and near-infrared spectra of a‡ Dry combustion of acidified soil.

highly calcareous soil before and after treatment with acid for§ Determined by difference between untreated and acidified soil.
removal of carbonates. The carbonate (i.e., CaCO3 ) spectrum in¶ 1:1 suspension with 0.01 M CaCl2.

# 1:1 suspension with deionized water. each spectral region is included for additional comparison.
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A comparison of the spectra from MIRS and NIRS NIRS. The MIRS calibration for CO3 provided a re-
markably good fit (R2 � 0.99) to the data consideringfor a calcareous soil shows obvious differences in the

character of spectral data in the NIR and MIR regions the diversity of soil samples analyzed. Comparison of
MIRS and NIRS for measurement of organic C also(Fig. 2). Strong and well defined absorption features

from fundamental molecular vibration modes dominate showed that MIRS outperformed NIRS (Fig. 4). The
use of acidified samples provided better calibration forthe MIR region, whereas comparatively muted and dif-

fuse absorption features from vibration overtones and organic C in the MIR region, but degraded the ability
to calibrate in the NIR region. For all calibrations, acombination bands fall within the NIR region. The influ-

ence of acidifying the calcareous soil on the spectra is number of spectral outliers were identified in the analy-
sis of the NIR data which were not identified in thealso shown with comparison to the spectra for CaCO3,

demonstrating the strong influence of CO3 on both the MIR data. This further indicates that NIRS is less robust
than MIRS when developing calibrations for widely di-MIR and NIR spectra of the untreated soil. Acid treat-

ment eliminated the absorption features correlated to verse soil samples.
Random exclusion of one third of the samples fromthe CaCO3 spectra, providing confirmation that these

features in the soil spectra were because of CO3 absorp- the calibration set to provide an independent validation
set (Table 3) showed that the validation set was pre-tion bands. Clearly, CO3 has a prominent influence on

MIR and NIR spectra of calcareous soils samples. dicted quite well by the calibration set, with slight intro-
duction of bias. An independent validation set com-A comparison of the ability of MIRS and NIRS to

measure total and inorganic soil C (Fig. 3) shows that posed solely of samples from the Nebraska sampling
site (Table 4) showed signficantly higher bias in predic-the MIRS calibrations performed significantly better

than those of NIRS. The Residual mean squared devia- tions than with the random exclusion set. Previous work
demonstrated that inclusion of just a few samples fromtion (RMSD) for MIRS was essentially half that for

Fig. 3. Comparison of calibration for near-infrared and mid-infrared spectroscopy based on total and inorganic soil C measured by dry combustion
(actual). Partial least squares (PLS) regression analysis for total C used 17 factors for mid-infrared spectroscopy (MIRS) and 16 factors for
near- infrared spectroscopy (NIRS), and analysis for inorganic C used 16 factors for MIRS and 19 factors for NIRS. Residual Mean Squared
Deviation is represented by RMSD.
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Fig. 4. Comparison of calibrations near- and mid-infrared spectroscopy based on organic C in untreated and acidified soils measured by dry
combustion (actual). Partial Least Squares (PLS) regression analysis for organic C used 17 factors for mid-infrared spectroscopy (MIRS) and
18 factors for NIRS, and analysis for organic C (acid) used 19 factors for MIRS and 17 factors for NIRS. Residual Mean Squared Deviation
is represented by RMSD.

a new sampling location into the calibration set can with complex sample matrices such as soil, individual
components often make up only a small portion of thereadily correct for similar location bias (McCarty and

Reeves, 2000). total sample, and, therefore, the component being mea-
sured is effectively diluted by the sample as a whole. ItOne of the concerns with use of MIR for quantitative

analysis of neat samples has been the very strong absorp- is evident from MIR spectra of calcareous soil, however,
that the CO3 absorptions are very prominent featurestion features that lead to nonlinearities and spectral

distortions (Culler, 1993). Recent work has demon- of the spectra. This increases the potential for associated
nonlinearities and distortions and could potentially limitstrated, however, that sample dilution is not necessary
utility of chemometric analysis. We demonstrate, how-with use of MIRS in conjunction with chemometric anal-

ysis of soil (Nguyen et al., 1991; Janik et al., 1998; Reeves Table 4. Independent validation set of soil samples collected at
et al., 2001). This may result partly from the fact that the Nebraska location (n � 16) with the remaining samples

(n � 257) used to develop a calibration.
Table 3. Independent validation set of 60 soil samples with the

MIR† NIR‡remaining samples (n � 177) used to develop a calibration.
Assay R2 RMSD§ Bias R2 RMSD† BiasMIR NIR

Total C 0.99 7.6 3.9 0.96 10.1 �5.8Assay R2 RMSD† Bias R2 RMSD† Bias
Inorganic C 0.82 0.7 �0.3 0.42 4.4 �4.2
Organic C 0.98 6.0 �2.7 0.98 7.9 �2.8Total C 0.95 3.4 0.4 0.86 5.4 �0.3

Inorganic C 0.98 1.2 0.3 0.87 3.1 �0.1 Organic C (acid) 0.98 4.8 �1.8 0.98 7.1 �2.0
Organic C 0.94 3.2 0.01 0.82 5.5 0.1

† Mid infrared.Organic C (acid) 0.97 2.4 0.5 0.80 5.8 �1.1
‡ Near-infrared.
§ Residual mean squared deviation.† Residual mean squared deviation.
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Fig. 5. Residual error distributions for mid-infrared spectroscopy (MIRS) and near-infrared spectroscopy (NIRS) calibrations. Dashed lines
indicate two standard deviations (2�).

ever, that very good calibrations can be obtained for error distribution for MIRS, but a broader distribution
for NIRS. It is noteworthy that the spread in residualssoil CO3. This may result from sufficient dilution of CO3

by other soil components and the ability of PLS analysis associated with measurement of total soil C (standard
deviation, SD � 2.6) was essentially equal to the spreadto handle nonlinear influences within spectral data.

We found with MIRS analysis that determination of in residuals associated with measurement of organic C
in the untreated soils (SD � 2.7). This indicates thatorganic C is degraded by soil CO3 and that with acid

treatment of the samples a significantly better calibra- most of the error in estimating total soil C in soil resulted
from estimation errors of the organic C component. Intion can be obtained. The cause of this degradation is

not known. It is possible that the strong CO3 signal fact, it may well be that a substantial portion of the
residuals for estimating inorganic soil C was because ofmasks spectral features important in determination of

organic soil C. In the MIRS analysis of soil samples limitations in determinations based on difference be-
tween total and organic soil C. A more accurate chemi-without acid treatment, a large portion of the spectral

variance for that is associated with the CO3 component cal analysis for inorganic soil C could very likely cause
significant improvement in MIRS calibrations for thisof the soil. It is possible that the large pool of spectral

variance associated with soil CO3 degrades the ability constituent.
With the wide extent of soil properties covered byto obtain information from the remaining variance asso-

ciated with the soil organic C component. the soil samples used in this study, it is uncertain that the
number of samples used (273) was sufficient to provideComparison of the distribution of PLS error residuals

for MIRS and NIRS calibrations (Fig. 5) show that cor- optimal resolution of the spectral variance needed for
best estimates of soil C. It may well be that larger cali-responding untreated soil samples tended to be poorly

predicted for total C and organic C in both spectral bration sets are needed to cover the diversity of soil
properties found over the large geographic region thatregions. Acid treatment of soil diminished this trend for

organic C estimation and resulted in a tighter residual was sampled. Even with this limitation, our study dem-
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